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Abstract

We analyze the tail behavior of the maximum N of {W (t)− t2 : t ≥ 0}, where W is standard
Brownian motion on [0,∞) and give an asymptotic expansion for P{N ≥ x}, as x → ∞. This
extends a first order result on the tail behavior, which can be deduced from Hüsler and
Piterbarg (1999). We also point out the relation between certain results in Groeneboom
(2010) and Janson, Louchard and Martin-Löf (2010).

1 Introduction

The distribution function of the maximum of Brownian motion minus a parabola was studied in
the two recent papers Janson, Louchard and Martin-Löf (2010) and Groeneboom (2010), both
for one-sided and two-sided Brownian motion. The characterization of the distribution function
is somewhat different in the two papers, but both characterizations (unavoidably) involve Airy
functions. In this note we address the tail behavior of the distribution, a topic that was not
addressed in these papers.

The tail behavior of the maximum plays an important role in certain recent studies on the
asymptotic distribution of tests for monotone hazards, based on integral-type statistics measuring
the distance between the empirical cumulative hazard function and its greatest convex minorant,
for example in Groeneboom and Jongbloed (2010).

Let N be defined by
N = max

t≥0
{W (t) − t2}, (1.1)

where W is standard Brownian motion on [0,∞). It can be deduced from Theorem 2.1 in Hüsler

and Piterbarg (1999) that the distribution function FN of N satisfies:

1 − FN (x) ∼ 1√
3

exp

{

−8x3/2

3
√

3

}

, x → ∞.

In section 2 we will give an asymptotic expansion of the left-hand side, which extends this result.
The proof is based on an integral expression for the density, derived from Groeneboom (2010)
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(which in turn relies on Groeneboom (1989)), and uses a saddle point method for the integral
over a shifted path in the complex plane. As a side effect, it also leads to a clarification of the
relation between the representations of the distribution, given in Janson, Louchard and Martin-

Löf (2010) and Groeneboom (2010).

2 Main results

In the following, we will use Corollary 2.1 of Groeneboom (2010), which is stated below for ease
of reference, specialized to the density of the maximum of W (t) − t2 (instead of the more general
W (t) − ct2).

Lemma 2.1 (Corollary 2.1 in Groeneboom (2010)) The density f of N is given by:

fN(x) = 22/3

{

Ai
(

22/3x
)

− 2Re

(

e−iπ/6

∫ ∞

0

Ai
(

e−iπ/6u
)

Ai ′
(

iu + 22/3x
)

Ai(iu)
du

)}

, x > 0. (2.2)

where Ai is the Airy function Ai, as defined in, e.g., Olver (2010)1.

We deduce from this the following representation which is better suited for our purposes.

Lemma 2.2 The density fN of N is given by:

fN (x) =
22/3

π
Re

(

∫ ∞

0

Ai
(

iu + 22/3x
)

Ai(iu)2
du

)

=
1

21/3π

∫ ∞

−∞

Ai
(

iu + 22/3x
)

Ai(iu)2
du, x > 0. (2.3)

Proof. Integration by parts of the second term of (2.2) yields:

fN (x) = 2 · 22/3 Re

(

∫ ∞

0
Ai
(

iu + 22/3x
) d

du

{

e−iπ/6Ai
(

e−iπ/6u
)

iAi(iu)

}

du

)

, x > 0.

Let the function h be defined by

h(u) =
d

du

{

e−iπ/6Ai
(

e−iπ/6u
)

iAi(iu)

}

.

Using Olver (2010)2:

Ai
(

e−iπ/6u
)

= Ai
(

e−2iπ/3iu
)

= 1
2e−iπ/3 {Ai(iu) + iBi(iu)} ,

we obtain

h(u) = 1
2

{

Ai ′(iu) + iBi ′(iu)

iAi(iu)
− (Ai(iu) + iBi(iu)) Ai ′(iu)

iAi(iu)2

}

,

and using the Wronskian Ai(z)Bi ′(z) − Ai ′(z)Bi(z) = 1/π we conclude that

h(u) =
1

2πAi(iu)2
.

This gives the desired result. 2

1http://dlmf.nist.gov/9
2http://dlmf.nist.gov/9.2.E11
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Remark 2.1 Lemma 2.2 is in fact equivalent to relation (5.10) in Janson, Louchard and Martin-

Löf (2010). The difference in the scaling constants is caused by the fact that they consider the
maximum of W (t) − 1

2t2 instead of the maximum of W (t) − t2 (see also section 3) and the fact
that they integrate from −∞ to ∞ (in that way also the imaginary part drops out). However,
they arrive at this relation in a completely different way. So in this case we can go from Corollary
2.1 in Groeneboom (2010) to the result in Janson, Louchard and Martin-Löf (2010), just by
using integration by parts. This might serve as a first step in establishing the relation between the
representations in the two papers.

We are now ready to prove our main result. We will give two proofs, one based on the first
equality in (2.3) and the other one based on the second equality.

Theorem 2.1 Let N be defined by (1.1), and let fN and FN be the density and the distribution
function of N , respectively. Then,

(i)

fN (x) ∼ 4
√

x

3
exp

(

−8x3/2

3
√

3

)

∞
∑

k=0

bk

x3k/2
, x → ∞, (2.4)

where the first coefficients are

b0 = 1, b1 = 19
48

√
3, b2 = −3851

1536 , b3 = 3380005
221184

√
3, b4 = −6474441455

14155776 .

(ii)

1 − FN (x) ∼ 1√
3

exp

(

−8x3/2

3
√

3

)

∞
∑

k=0

ck

x3k/2
, x → ∞,

where the first coefficients are

c0 = 1, c1 = 19
48

√
3, c2 = −4535

1536 , c3 = 3869785
221184

√
3, c4 = −7310315015

14155776 .

Proof. Here we only derive the leading terms. Further terms in the asymptotic expansion of
fN (x) are computed in the appendix, and those for FN (x) follow upon integrating the expansion
for fN (x).

We start with the second representation in (2.3), and write

fN (x) =
1

21/3π

∫ ∞

−∞

Ai
(

iu + 22/3x
)

Ai(iu)2
du =

x

21/3πi

∫ i∞

−i∞

Ai
(

x
(

u + 22/3
))

Ai(xu)2
du, x > 0. (2.5)

We need the well-known asymptotic behavior of the Airy function (see Olver (2010)3):

Ai(z) ∼ e−ζ

2
√

πz1/4
, ζ = 2

3z3/2, z → ∞, |ph z| < π. (2.6)

It follows that the behavior of the ratio of the Airy functions is given by

Ai
(

x
(

u + 22/3
))

Ai(xu)2
∼ 2

√
πx1/4u1/2

(u + 22/3)1/4
exp

(

2
3x3/2φ(u)

)

, xu → ∞, |phxu| < π, (2.7)

3http://dlmf.nist.gov/9.7.E5
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where
φ(u) = 2u3/2 − (u + 22/3)3/2.

This function has a minimum at u = c = 1
322/3, and we shift the path of integration in the second

integral in (2.5) to the path P parallel to the imaginary axis, and running from c − i∞ to c + i∞.
A similar path was used in the proof of (ii) of Corollary 3.4 in Groeneboom (1989).

A local expansion at u = c gives

φ(u) = φ(c) + 1
2φ′′(c)(u − c)2 + O

(

(u − c)3
)

,

where

φ(c) = − 4√
3
, φ′′(c) =

9
√

3

210/3
. (2.8)

We find a first approximation of fN(x) by neglecting the O−term in the local expansion of φ(u)
and by taking u = c in the factor in front of the exponential factor in (2.7). This gives

fN (x) ∼ x

21/3πi

2
√

πx1/4c1/2

(c + 22/3)1/4
exp

(

2
3x3/2φ(c)

)

∫ c+i∞

c−i∞
exp

(

1
3x3/2φ′′(c)(u − c)2

)

du. (2.9)

Evaluating the integral:
∫ c+i∞

c−i∞
exp

(

1
3x3/2φ′′(c)(u − c)2

)

du =
i
√

π 25/3

33/4x3/4
,

we find the requested result

fN (x) ∼ 4
√

x

3
exp

(

−8x3/2

3
√

3

)

, x → ∞.

Upon integrating we obtain the result for the distribution function FN (x). 2

For two-sided Brownian motion we get similarly:

Corollary 2.1 Let M be defined by

M = max
t∈R

{W (t) − t2},

where W is standard two-sided Brownian motion, originating from zero. and let fM and FM be the
density and the distribution function of M , respectively. Then:

(i)

fM(x) = 2fN (x)FN (x) ∼ 8
√

x

3
exp

{

−8x3/2

3
√

3

}

, x → ∞.

(ii)

1 − FM (x) ∼ 2√
3

exp

{

−8x3/2

3
√

3

}

, x → ∞.

Proof. This follows from Corollary 2.2 of Groeneboom (2010), which gives the representation:

fM (x) = 2fN (x)FN (x), x ≥ 0.

2
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3 Concluding remarks

As pointed out to us by Svante Janson, the result implies certain facts for the moments of the
distribution. For example, applying Theorem 4.5 in Janson and Chassaing (2004) together with
Theorem 2.1 of the present paper gives:

(EM r)1/r ∼ 1

2
(3/2)1/3(r/e)2/3, r → ∞.

Theorem 2.1 can also easily be extended to a result for

Mc = max
t≥0

{W (t) − ct2},

by using the scaling relation:
Mc = c−1/3M,

see (1.7) of Janson, Louchard and Martin-Löf (2010). So, for example, Theorem 2.1 implies:

P {Mc ≥ x} = P

{

M ≥ c1/3x
}

∼ 1√
3

exp

{

−8x3/2√c

3
√

3

}

, x → ∞.

Also, by Lemma 2.2, the density of Mc is given by:

fMc(x) =
(4c)1/3

π
Re

(

∫ ∞

0

Ai
(

iu + (4c)1/3x
)

Ai(iu)2
du

)

, x > 0. (3.10)

4 Appendix. Computing more coefficients of the asymptotic ex-

pansions

For obtaining more coefficients in the asymptotic expansion of fN(x) and FN (x) we need more
details of the asymptotic behavior of the Airy function. We have the well-known expansion (see
Olver (2010)4):

Ai(z) ∼ e−ζ

2
√

πz1/4

∞
∑

k=0

(−1)k
uk

ζk
, z → ∞, |ph z| < π, (4.11)

where
ζ = 2

3z3/2,

and

uk =
(2k + 1)(2k + 3)(2k + 5) · · · (6k − 1)

(216)k k!
=

Γ(3k + 1
2)

54k k! Γ(k + 1
2)

,

The first coefficients are

u0 = 1, u1 = 5
72 , u2 = 385

10368 , u3 = 85085
2239488 , u4 = 37182145

644972544 .

Using (2.7) we write the second integral representation of fN(x) in (2.5) in the form

fN(x) =
22/3x5/4

√
π i

( c

4

)1/4
∫ c+i∞

c−i∞
exp

(

2
3x3/2φ(u)

)

A(u, x) du, c = 1
322/3, (4.12)

4http://dlmf.nist.gov/9.7.E5
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where A(u, x) is a slowly varying function along the path of integration. We have the asymptotic
representation

A(u, x) ∼
( c

4

)−1/4 u1/2

(u + 22/3)1/4

∞
∑

k=0

(−1)k
uk

ζk

(

∞
∑

k=0

(−1)k
uk

ηk

)2 , (4.13)

where

ζ = ξ
(

u + 22/3
)3/2

, η = ξu3/2, ξ = 2
3x3/2. (4.14)

The path of integration in (4.12) cuts the real u−axis at the saddle point of the exponential
function. For large u we have φ(u) ∼ u3/2, and for u → ±i∞ we have phφ(u) ∼ ±3π/4. This shows
the rate of convergence along this path. The optimal rate of convergence occurs when we take the
saddle point contour, or path of steepest descent, defined by ℑφ(u) = ℑφ(c) = 0. At infinity along
this path we have phu = ±2π/3. Along the saddle point contour the quantities η and ζ are large,
because the variable of integration is bounded away from the origin. Also, η and ζ have suitable
phases for using the asymptotic expansions as shown in (4.13).

By manipulating the asymptotic series, we obtain the following expansion:

A(u, x) ∼
( c

4

)−1/4 u1/2

(u + 22/3)1/4

∞
∑

k=0

Ak(u)

ξk
, (4.15)

where the first few coefficients are given by

A0(u) = 1,

A1(u) =
−5R + 10

72u3/2
,

A2(u) =
385R2 − 620 − 100R

10368u3
,

A3(u) =
9300R + 138520 − 85085R3 + 11550R2

2239488u9/2
,

A4(u) =
−2770400R − 62797040 + 37182145R4 − 1432200R2 − 3403400R3

644972544u6
,

(4.16)

where

R =
u3/2

(u + 3c)3/2
.

Substituting the expansion in (4.15) into (4.12) we obtain

fN (x) ∼ 22/3x5/4

√
π i

( c

4

)1/4
∞
∑

k=0

Φk(ξ)

ξk
, (4.17)

where

Φk(ξ) =
( c

4

)−1/4
∫ ∞e2πi/3

∞e−2πi/3

u1/2

(u + 22/3)1/4
exp (ξφ(u)) Ak(u) du. (4.18)

Next we transform these integrals into a standard form by putting

φ(u) − φ(c) = 1
2φ′′(c)v2, (4.19)

6



Table 1: The first coefficients C
(k)
j defined in (4.22).

k C
(k)
0 C

(k)
1 C

(k)
2 C

(k)
3 C

(k)
4

0 1
79

1152

√

3 −
100031
884736

923668975
3057647616

√

3 −
18376891706495
4696546738176

1
25
128

√

3 −
29165
49152

180113185
113246208

√

3 −
2860100405525
130459631616

85377203586646825
601157982486528

√

3

2 −
13365
32768

8404125
4194304

√

3 −
40293630095
1073741824

368687253142325
1236950581248

√

3 −
49545968934273638575

5699868278390784

3
2649065
4194304

√

3 −
36271635085
1610612736

945966020191985
3710851743744

√

3 −
40394551713291361525

4274901208793088
2567961709695678056917625

19698744770118549504

√

3

4 −
9582104685
2147483648

80522162743295
824633720832

√

3 −
3320764894803103375

633318697598976
204107643936013882342175

2188749418902061056

√

3 −
17534973455328077403049668175

3361919107433565782016

where φ(c) and φ′′(c) are given in (2.8). We prescribe sign(u − c) = sign(v), and we need the
coefficients in the expansion

u = c + v + d2v
2 + d3v

3 + . . . ,

of which the first few are given by

d2 =
5

48c
, d3 = − 1

72c2
, d4 =

115

27648c3
, d5 = − 385

221184c4
, d6 =

1705

1990656c5
.

The transformation gives

Φk(u) = exp (ξφ(c))

∫ i∞

−i∞
Bk(v) exp

(

1
2φ′′(c)ξv2

)

dv, (4.20)

where

Bk(v) =
( c

4

)−1/4 u1/2

(u + 3c)1/4
Ak(u)

du

dv
. (4.21)

The final step is to expand each Bk(v):

Bk(v) =
∞
∑

j=0

B
(k)
j vj,

to obtain the expansions for Φk(ξ):

Φk(ξ) ∼ i

√

2π

φ′′(c) ξ
exp (ξφ(c))

∞
∑

j=0

C
(k)
j

ξj
, C

(k)
j =

B
(k)
2j (−1)j2j

(

1
2

)

j

(φ′′(c))j
, (4.22)

and putting these expansions into (4.17). This gives

fN (x) ∼ 4
√

x

3
exp

(

−8x3/2

3
√

3

)

∞
∑

k=0

Dk

ξk
, Dk =

k
∑

j=0

C
(k−j)
j ,

and the bk of (2.4) are given by

bk =
(

3
2

)k
Dk, k = 0, 1, 2, . . . .
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